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Abstract
In this paper we provide an approach for identifying certain mixture
representations of some invariant measures of interacting stochastic systems.
This is related to the problem of ergodicity of certain extremal invariant
measures that are translation invariant. Corresponding to these, results
concerning the existence of invariant measures and certain weak convergence
of the systems are also provided.

PACS numbers: 02.50.Ga, 05.45.−a, 45.50.Jf

1. Introduction

The problem considered in this paper is motivated by investigating an open question for
interacting particle systems. The question is roughly that: for a certain system with
configuration space E = WZd

, if an invariant probability measure ν is translation invariant and
extremal among all such measures, is it ergodic? See [1, 7] for a precise description. Supported
by a well-known result for Gibbs measures, the answer to the above question is expected to be
affirmative under very mild conditions. But only partial results were obtained in some special
cases (cf [1, 2, 7]). In this paper we provide an approach for studying related problems,
more precisely, for identifying certain mixture representations of an invariant measure. This
approach is hopefully applicable for more widely ranging problems.

Let W be a Polish space endowed with the Borel σ -algebra, representing the state space of
the particle at a single site, S a countable set, serving as the set of sites, E = WS endowed with
the product topology and the corresponding Borel σ -algebra, interpreted as the configuration
space. M1(E) denotes the space of all probability measures on E, endowed with the weak
topology. In this paper we will mainly handle the case S = Zd , the d-dimensional lattice,
but extension to more general cases only requires more notation. The time evolution of an
interacting particle system can usually be described by a homogeneous Feller–Markov process
{Pη, η ∈ E} on � = D([0,∞), E), driven by certain dynamic characteristics, where � is
the space of functions from [0,∞) to E that are right continuous with left limits. For a
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precise description of such Markov processes in the case when W = {0, 1}, see [7]. Let
{S(t), t � 0} be the corresponding Markov semigroup on Cb(E)—the space of bounded
continuous functions on E. From the point of view of statistical physics, one of the most
important objects associated with such a Markov process is the set of its invariant probability
measures, denoted by Mi(E). Recall that µ ∈ Mi(E) iff µS(t) = µ for every t � 0, where
µS(t) is the distribution of the process at time t starting with the initial distribution µ. Phase
transition can be described by the non-uniqueness of such invariant measures. If there is a
unique invariant measure ν and, starting from any initial distribution µ, µS(t) converges in
a certain sense to ν as t → ∞, then the system can be said to be ergodic (cf [7]). Thus
characterizing invariant measures of a stochastic system is of fundamental interest. Clearly,
those extremal invariant measures play an essential role. Denote by Mi,e(E) the set of all such
extremal measures.

If the dynamic characteristics driving the system are (space-) translation invariant, then
most of the typical invariant measures should also be translation invariant. Thus a natural
problem is to characterize those invariant measures that are (space-shift) ergodic. Let
Ms(E) be the set of translation invariant probability measures on E and Ms,e(E) the set
of ergodic measures in Ms(E) and (Mi(E) ∩ Ms(E))e the set of extremal measures in
Mi(E) ∩ Ms(E). Then the question stated in the first paragraph can be formally stated
as: is every ν ∈ (Mi(E) ∩ Ms(E))e ergodic? By the well-known ergodic decomposition
theorem, for every ν ∈ (Mi(E)∩Ms(E))e, there is a unique probability measure � on Ms(E),
supported in Ms,e(E), such that

ν =
∫

Ms,e(E)

µ�(dµ). (1.1)

Obviously, if one can identify �-almost all component measures in the above mixture as
invariant measures of the process, then the question is affirmatively answered. In this paper
we provide an approach for studying related problems from this point of view. Actually we
consider identifying both the component and the mixing measures. We summarize as follows
the main results and the techniques used in proving them.

In section 2 consider the problem of identifying the mixing measure. This is done by
considering the dynamic cases. That is, we consider continuous-time Markov processes,
focusing on characterizing their invariant measures. In theorem 2.1, we first present a
connection between the tightness of T

µ
t , the average in time of laws of the process, and

that of R
µ
t , the laws of the empirical measures of the process. Then we give a representation

relating their limits. Furthermore, we show that if T
µ
t converges weakly to some extremal

invariant measure ν of the process, then R
µ
t converges weakly to the point mass δν and in

particular, if µ is itself an invariant measure, then R
µ
t converges weakly to a measure supported

in the set of extremal invariant measures.
The above results suggest a way of identifying the mixing measure in a representation

such as (1.1). In theorem 2.2 we carry out this idea by using a sample of n iid paths that run up
to time n. We show that a certain average Q∗

n of their empirical measures converges to such a
mixing measure in probability. As a consequence we see in corollary 2.3 that if T

µ
t converges

to an extremal invariant measure ν, then Q∗
n is a consistent estimator of δν and in particular,

if µ is itself an invariant measure, then Q∗
n is a consistent estimator of the mixing measure

in (1.1). Proposition 2.4 provides a useful sufficient condition for the required tightness.
Section 3 is devoted to the problem of identifying the component measures in a mixture.

This is carried out from the point of view of a random field, focusing on the space of probability
measures having certain invariance. We use the asymptotic behaviour of the empirical fields
Rn to study the properties of the component measures. The desired property is characterized
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by a certain functional which governs the large deviation upper bounds of the laws of the
empirical fields.

Applications are given in section 3 and, especially, in section 4. We show in section 3
that under some mild conditions, every stationary Markov chain on a Polish space is a mixture
of those stationary and ergodic chains with the same transition probabilities. In section 4
we mainly discuss applications to interacting particle systems, or more precisely, to Gibbs
random fields and related stochastic Ising models. We first provide, using our general results in
sections 2 and 3, a short proof of a well-known result which says that every translation invariant
Gibbs measure is a mixture of those Gibbs measures that are ergodic. We then describe a
way of approaching the extremal Gibbs measures relative to a certain potential from the point
of view of Glauber dynamics. We formulate certain consistent estimators of such measures
using some independent paths of the dynamic process. This suggests a way of inferring the
existence of phase transitions.

Our approach involves certain tightness and large deviation (LD) arguments. Such
arguments turn out to be useful in proving the existence of invariant measures and certain
weak convergence of the system (see section 2). We use large deviation estimates both to
specify the support of the mixing measure and to characterize properties of the component
measures.

Throughout this paper, for a measure µ and a function f , both Eµf and µ(f ) denote the
expectation of f w.r.t. µ.

2. Identifying the mixing measure

In this section we consider the problem of identifying the mixing measure by studying
the dynamic case. We will not specify the dynamic characteristics of the systems under
consideration. We only assume that they determine a unique homogeneous Feller–Markov
process. Let {Pη, η ∈ E} be the Markov process on � that we are interested in. For
µ ∈ M1(E), define

Pµ =
∫

Pηµ(dη)

which is the Markov process with initial distribution µ. Then µS(t) is just Pµ(ηt ∈ ·). Define
for t > 0

T
µ
t = 1

t

∫ t

0
µS(u) du.

The empirical measure L
µ
t of the process up to time t is defined as

Lt = Lt(η·) = 1

t

∫ t

0
δηu

du η· ∈ �

where δη is the Dirac measure centred at η ∈ E. Let Q
µ
t = Pµ(Lt ∈ ·) be the distribution of

Lt under Pµ, which is an element in M1(M1(E)), the set of probability measures on M1(E).
Now we can state our first main result.

Theorem 2.1. Given µ ∈ M1(E).

(1) If
{
Q

µ
t , t > 0

}
is tight, then so is

{
T

µ
t , t > 0

}
. Thus Mi(E) �= ∅. Furthermore, every

weak limit Q
µ
∞ of Q

µ
t as t → ∞ is supported in Mi(E) and every weak limit µ∞ of T

µ
t

as t → ∞ admits a mixture representation as

µ∞ =
∫

Mi(E)

γQµ
∞(dγ )

where Q
µ
∞ is a weak limit of Q

µ
t as t → ∞.
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(2) If
{
Q

µ
t , t > 0

}
is tight and limt→∞ T

µ
t = ν weakly for some ν ∈ Mi,e(E), then

lim
t→∞ Q

µ
t = δν

weakly. Furthermore, if µ ∈ Mi(E), then there exists the weak limit

Qµ
∞ = lim

t→∞ Q
µ
t

which is supported in Mi,e(E) and

µ =
∫

Mi,e(E)

γQµ
∞(dγ ). (2.1)

Proof. To prove conclusion (1), fix an open set U ⊃ Mi(E). For any ε > 0, choose a compact
subset Kε of M1(E) such that Q

µ
t

(
Kc

ε

)
< ε,∀ t > 0. To estimate Q

µ
t (Uc ∩ Kε), we note that

from a well-known large deviation result, there exists a lower semi-continuous function I from
M1(E) to [0,∞], such that I (γ ) = 0 iff γ ∈ Mi(E) and that

lim sup
t→∞

1

t
log Q

µ
t (Uc ∩ Kε) � − inf

γ∈Uc∩Kε

I (γ ) < 0.

Combining the above estimates we see that

lim sup
t→∞

Q
µ
t (Uc) � ε

for every ε > 0. This implies that every weak limit of Q
µ
t as t → ∞ is supported in Mi(E).

Now note that for every f ∈ Cb(E),

T
µ
t (f ) =

∫
Lt(f ) dPµ =

∫
α(f ) dQ

µ
t .

The tightness of T
µ
t follows from this and the tightness of Q

µ
t . Then a standard argument

gives (2.1).
Now we prove conclusion (2). First suppose that Q

µ
t converges weakly to some

ν ∈ Mi,e(E) as t → ∞. By the assumptions, the representation

Ttµ =
∫

αQ
µ
t (dα)

and conclusion (1) we see that any weak limit � of
{
Q

µ
t , t � 0

}
satisfies

ν =
∫

α�(dα).

It follows from the extremality of ν that � = δν . This implies that the weak limit limt→∞ Q
µ
t

exists and is just δν .
Now suppose µ ∈ Mi(E). Then from [2] we know that µ can be uniquely represented as

µ =
∫

γ∈Mi,e(E)

γ �(dγ ) (2.2)

for some probability measure � on Mi(E) supported in Mi,e(E). It then follows that

T
µ
t =

∫
γ∈Mi,e(E)

T
γ
t �(dγ )

and T
γ
t = γ . Thus from conclusion (1) we know that limt→∞ Q

γ
t = δγ weakly for �-almost

every γ . It follows that

lim
t→∞ Q

µ
t = lim

t→∞

∫
Q

γ
t �(dγ ) =

∫
δγ �(dγ ).
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The proof is completed by setting Q
µ
∞ = ∫

δγ �(dγ ). �

To provide an application of theorem 2.1 to the problem of identifying the mixing measure
Q

µ
∞ in (2.1), we need the following theorem. The idea is to estimate the ‘parameter’ from

some realization of the paths of the process. Let {ηt , 0 � t � n} be such a path up to time
n,

{
η

(i)
t , 0 � t � n

}
, i = 1, . . . , n, be n independent copies of the above path. P (n)

µ denote
the n-fold product of Pµ. Define

Li
n = 1

n

∫ n

0
δ
η

(i)
t

dt i = 1, . . . , n

and

Q∗
n = 1

n

n∑
i=1

δLi
n

which is a probability measure on M1(E). Then we have the following

Theorem 2.2. Given µ ∈ Mi(E). If
{
P (n)

µ (Q∗
n ∈ ·), n � 1

}
is tight and limt→∞ Q

µ
t = Q

µ
∞

weakly, then limn→∞ Q∗
n = Q

µ
∞ weakly in probability P (n)

µ .

Remark 2.1. This theorem implies that the Q∗
n are consistent estimators of Q

µ
∞.

Proof of theorem 2.2. Let d(· , ·) be any fixed metric on M1(M1(E)) that generates the weak
topology. For any ε > 0 and δ > 0, choose a compact subset Kε in M1(M1(E)) such that
P (n)

µ

(
Q∗

n ∈ Kc
ε

)
< ε ∀ n � 1. Thus

P (n)
µ

(
d
(
Q∗

n,Q
µ
∞

)
� δ

)
< P (n)

µ (d(Q∗
n,Q

∗
∞) � δ;Q∗

n ∈ Kε) + ε. (2.3)

From the assumption we see that for any f ∈ Cb(M1(E))

lim
n→∞

1

n
log

∫
enf (γ )P (n)

µ (Q∗
n ∈ dγ ) = lim

n→∞ log
∫

ef (γ )Qµ
n (dγ ) = log

∫
ef dQµ

∞.

Thus from theorem 2.1 in [4] we obtain

lim sup
n→∞

1

n
log P (n)

µ

(
d
(
Q∗

n,Q
µ
∞

)
� δ;Q∗

n ∈ Kε

)
� − inf

{
h
(
Q,Qµ

∞
)
, d

(
Q,Qµ

∞
)

� δ and Q ∈ Kε

}
(2.4)

where h
(
Q,Q

µ
∞

) = supf ∈Cb(M1(E))

[
Q(f ) − log Q

µ
∞(ef )

]
, which is just the relative entropy

of Q w.r.t. Q
µ
∞ and assumes 0 only at Q

µ
∞. Thus the rhs of (2.4) is negative. Combining this

with (2.3) we conclude

lim
n→∞ P (n)

µ

(
d
(
Q∗

n,Q
µ
∞

)
� δ

) = 0

since ε > 0 is arbitrary. The theorem is proved. �

The following corollary is a direct consequence of theorems 1 and 2.

Corollary 2.3. If limt→∞ T
µ
t = ν weakly for some ν ∈ Mi,e(E), then limn→∞ Q∗

n = δν

weakly in probability P (n)
µ . If µ ∈ Mi(E) and Q

µ
∞ is the weak limit of Q

µ
t as t → ∞, then

limn→∞ Q∗
n = Q

µ
∞ weakly in probability P (n)

µ .

Now we provide conditions for tightness of
{
Q

µ
t , t � 0

}
and {Pµ(Q∗

n ∈ ·), n � 1}.
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Proposition 2.4.

(1) If there exists a function φ on E that is bounded from below and has compact level sets
(i.e., for any real a, {η, φ(η) � a} is a compact subset of E), and for some constant c � 0,∫ t

0
EPµφ(ηu) du � ct ∀ t > 0 (2.5)

then
{
Q

µ
t , t � 0

}
is tight;

(2) If
{
Q

µ
n , n � 0

}
is tight, then so is

{
P (n)

µ (Q∗
n ∈ ·), n � 1

}
.

Proof.

(1) The proof is standard. Let φ be a function satisfying the required conditions, −b be a
lower bound of it. For each l � 1, let El = {η ∈ E, φ(η) + b � l3}, which is compact
in E. Define

Jl =
{
µ ∈ M1(E), µ

(
Ec

l

)
� 1

l

}
.

Then by the assumption on φ,

Q
µ
t

(
J c

l

)
� 1

l2t

[∫ t

0
EPµφ(ηu) du + bt

]
� b + c

l2
. (2.6)

Thus if we define compact subsets of M1(E) by

Kl = ∩∞
i=1Jl+i l � 1

then it follows from (2.6) that for every l � 1,

Q
µ
t

(
Kc

l

)
� b + c

l

implying the tightness of
{
Q

µ
t , t � 0

}
.

(2) Now suppose that
{
Q

µ
n , n � 1

}
is tight. Then it is well known that there is a function �

on M1(E), bounded from below with compact level sets, such that for some constant c,

Qµ
n (�) � c ∀ n � 1.

This is equivalent to
n∑

i=1

EP (n)
µ �

(
Li

n

)
� cn ∀ n � 1

which is similar to (2.5). Thus applying the same argument as above we obtain the
tightness of

{
P (n)

µ (Q∗
n ∈ ·), n � 1

}
. The proof is completed. �

3. Identifying the components

Now we turn to the problem of identifying the components in a mixture of measures. We will
use the empirical fields on E defined by

Rn = Rn(η) = 1

|�n|
∑
i∈�n

δθiη η ∈ E n � 1

where {�n, n � 1} is any fixed sequence of finite subsets of Zd increasing to Zd as
n ↗ ∞, |�n| is the cardinality of �n, θi is the usual shift operator on E defined by
(θiη)(j) = η(j + i) for j ∈ Zd . A general result is the following
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Theorem 3.1. Let Aδ, δ � 0, be a family of closed subsets of M1(E) with Aδ ↘ A0 as δ ↘ 0.
Given µ ∈ M1(E) satisfying that {µ(Rn ∈ ·), n � 1} is tight, Eµ(Rn) converges weakly to µ

and that for each compact K ⊂ M1(E)

lim sup
δ→0

lim sup
n→∞

1

n
log µ

(
Rn ∈ Ac

δ ∩ K
)

� lim sup
δ→0

lim sup
n→∞

1

n
log µ(Rn ∈ Aδ ∩ K). (3.1)

Further suppose that there is a sequence {an, n � 1} of positive numbers with an → ∞, and
a function I from M1(E) to [0,∞] such that for every compact K ⊂ M1(E),

lim sup
n→∞

1

an

log µ(Rn ∈ K) � − inf
γ∈K

I (γ ) (3.2)

and that I (γ ) = 0 implies that γ has property (P). Assume that

µ =
∫

A0

γ�(dγ ) (3.3)

for a unique probability measure � on M1(E) supported in A0. Then �-almost all γ possess
property (P).

Before proving it, we discuss a potential application of the above theorem. We are
interested in the case where µ is translation invariant and is an invariant measure of some
interacting stochastic system, or some Markov process, as described in the introduction, and
where (3.3) is the ergodic decomposition of µ. In this case A0 is the support of the mixing
measure in the decomposition representation. We choose Aδ = {γ, d(γ,A0) � δ}. Then it is
clear

lim
n→∞ µ(Rn ∈ Aδ) = 1

for each δ > 0. Thus (3.1) is satisfied. Obviously µ = Eµ(Rn). As for tightness, conditions
similar to those given in proposition 2.4 are sufficient and practical. Thus what we need to do
is to specify the property (P) and to find out when (3.2) will be satisfied with some I reflecting
(P). A concrete case is as follows:

d = 1 and µ is a stationary Markov chain with state space W . Then by the large deviation
results for Markov chain (cf, e.g., [5]) we see that under some mild conditions, there is a
lower semi-continuous function I from Ms(E) to [0,∞] such that for every compact subset K
of Ms(E),

lim sup
n→∞

1

n
µ(Rn ∈ K) � − inf

γ∈K
I (γ ) (3.4)

and that I (γ ) = 0 implies that γ is also a stationary Markov chain with the same transition
probabilities as those for µ, the property (P) in this case. That is, our argument shows that
under the required conditions, every stationary Markov chain on a Polish space is a mixture
of those stationary and ergodic Markov chains with the same transition probabilities.

Applications to interacting particle systems will be discussed in section 4.

Proof of theorem 3.1. The argument is similar to that used in proving theorem 2.1. For given
ε > 0, choose a compact subset Kε of M1(E), such that

µ
(
Rn ∈ Kc

ε

)
� ε ∀n � 1. (3.5)

Then for any open set U ⊃ A0 ∩ {γ, I (γ ) = 0},
µ(Rn ∈ Uc) � ε + µ(Rn ∈ Uc ∩ Kε) ∀n � 1. (3.6)
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Note that by assumptions (3.1) and (3.2)

lim sup
δ→0

lim sup
n→∞

1

an

log µ(Rn ∈ Uc ∩ Kε) � lim sup
δ→0

lim sup
n→∞

1

an

log µ(Rn ∈ Aδ ∩ Uc ∩ Kε)

� − inf
γ∈A0∩Uc∩Kε

I (γ ) < 0. (3.7)

Combining this with (3.5) we obtain

lim
n→∞ µ(Rn ∈ Uc) = 0

since ε is arbitrary. This implies that any weak limit �∞ of µ(Rn ∈ ·) is supported in
A0 ∩ {γ, I (γ ) = 0}. Let

{
µ

(
Rnk

∈ ·), k � 1
}

converge weakly to �∞ as k → ∞. Then by
the assumptions on µ we see that

µ = lim
k→∞

Eµ
(
Rnk

) = lim
k→∞

∫
γµ

(
Rnk

∈ dγ
) =

∫
A0∩{γ,I (γ )=0}

γ�∞(dγ )

weakly. By the uniqueness assumption on such representation, �∞ = �. This proves the
theorem. In fact, this also shows that limn→∞ µ(Rn ∈ ·) = � weakly. �

4. Applications to particle systems

In this section we sketch some applications of the previous results to interacting particle
systems. We mainly consider Gibbs fields and related stochastic Ising models. Since
the configuration space involved will be compact, all the required tightness conditions are
automatically fulfilled.

We first briefly recall some notions concerning Gibbs measures (for a precise description,
see [6, 9]). In this setting W is compact and E = WZd

is the space of configurations. An
interaction potential is a family {�� : � ⊂ Zd is finite} of local functions with �� being
defined on W�. The potential is assumed to be translation invariant and satisfy∑

�
0

‖��‖ < ∞

where ‖ ‖ denotes the sup-norm. For V ⊂ Zd,FV denotes the sigma-algebra generated by
the projections η → η(x), x ∈ V . A probability measure ν on E is called a Gibbs measure
relative to this potential if a version of the conditional distribution of µ on E� = W� given
F�c is given by

µ(ξ�|F�c)(η) = [Z(η)]−1 exp




∑
A∩� �=∅

�A(ξ�η�c)




where ξ�η�c is the configuration with (ξ�η�c)(x) = ξ(x) if x ∈ �;= η(x) if x ∈ �c,Z(η)

is the normalizing constant. Denote by G the set of Gibbs measures relative to the given
potential, Ge the extremal elements in G. (G ∩ Ms(E))e is the set of extremal elements in
G ∩ Ms(E). The results in the following theorem may be found elsewhere. Here we derive
them as corollaries of theorem 3.1.

Theorem 4.1. Every µ ∈ G ∩ Ms(E) admits a unique representation (3.3) in which
A0 = G ∩ Ms,e(E). In particular

(G ∩ Ms(E))e = G ∩ Ms,e(E).

Proof. To fit this situation into the setting of theorem 3.1 and verify the conditions required,
we take (3.3) be the standard ergodic decomposition of µ, the property (P) be that ‘A measure
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is a Gibbs measure relative to the given potential’. Then, from the discussion following the
statement of theorem 3.1, we see that the only thing we need to do is to verify (3.2). But
this follows from the well-known large deviation results for Gibbs measures which say that,
there is a lower semi-continuous function I from Ms(E) to [0,∞], such that for every closed
K ⊂ Ms(E), (3.2) holds, and that I (γ ) = 0 iff γ is a Gibbs measure relative to the same
potential (cf [3, 6]). Thus A0 can be represented as A0 = G ∩ Ms,e(E), proving the first
conclusion of the theorem. The last conclusion is a direct consequence of this. �

Next, we briefly discuss an application of theorems in section 2 to stochastic Ising models.
For detailed definition of such models, see [8]. We only consider the ferromagnetic case here,
or more specifically, the nearest-neighbour case for simplicity. In this case, W = {−1, 1}, and
the potential is taken to be ��(η) = βη(x)η(y) for � = {x, y} with |y − x| = 1; = 0 for
other �, where β > 0 is the parameter representing the inverse temperature. The stochastic
Ising model that we are considering here is a spin flip system with spin flip rates given by

c(x, η) = exp


−β

∑
|y−x|=1

η(x)η(y)


 x ∈ Zd η ∈ E

which represent the probability rates that a configuration changes its state at a single site x.
Such a system is formally defined to be a continuous-time Markov process with state space E
(cf [8]). Thus we are in the setting discussed in section 2. An important result for such a system
is that there are extremal invariant measures µ− and µ+ which are translation invariant Gibbs
measures relative to the given potential, and there is no phase transition or, equivalently, the
system is ergodic in the sense described in paragraph 2 of section 1, iff µ− = µ+. Furthermore,
it is also known that

lim
t→∞ δ−1S(t) = µ− and lim

t→∞ δ1S(t) = µ+

weakly, where δ−1 and δ1 are the Dirac measures on E centred at the identically −1 and +1
configurations, respectively. It then follows that

lim
t→∞ T

δ−1
t = µ− and lim

t→∞ T δ1
t = µ+

weakly. Thus from corollary 2.3 we know that

lim
t→∞ Q∗

n = δµ− (resp. δµ+)

in probability P−1 (resp. in P1). These imply that for every f ∈ Cb(E),

lim
t→∞

1

n2

n∑
i=1

∫ n

0
f

(
η

(i)
t

)
dt = µ−(f ) (resp. µ+(f ))

in probability P−1 (resp. in P1). In particular, we have

lim
t→∞

1

n2

n∑
i=1

∫ n

0
η

(i)
t (0) dt = µ−(η(0) = 1) (resp. µ+(η(0) = 1))

in probability P−1 (resp. in P1). These suggest a way of estimating the two extremal measures
µ± and especially, of inferring the existence of phase transition.
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